
ECE 174 Homework # 4 Solutions

1. The two situations correspond to the mutually exclusive cases of a) b is in the range
of A, and b) nonzero b is not in the range of A.1

2. Meyer Problem 4.6.7. Let the data pairs be given by (xk, yk), k = 1, · · · ,m = 11.
(E.g., (x1, y1) = (−5, 2), etc.). For both the line fit and the quadratic fit, we want to
place the problem in the vector–matrix form,

y = Aα

for A m× n, where n is the dimension of the unknown parameter vector α, and solve
for α in the least-squares sense. For the linear fit we have,

y =


y1
y2
...
ym

 =


1 x1
1 x2
...

...
1 xm


(
α0

α1

)
= Aα ,

with n = 2. While for the quadratic fit we have,

y =


y1
y2
...
ym

 =


1 x1 x21
1 x2 x22
...

...
...

1 xm x2m


α0

α1

α2

 = Aα ,

with n = 3. Note that in both cases we have the data to fill in numerical values of y
and A. In both cases we have that the matrix A is full rank (you can check in matlab,
but it will usually be true for this type of problem). Thus the least squares solution
can be determined as,

α̂ = (ATA)−1ATy .

The optimal least–squares error has magnitude,

‖e‖2 = ‖y − Aα̂‖2 = (y − Aα̂)T (y − Aα̂) ,

which can be computed for both the quadratic and linear fits. In this case you will
find that the quadratic fit provides a much tighter fit to the data. Once you have the
parameters at hand, you can perform the prediction by plugging in the new value for
xk.

1This answer can be easily understood by drawing a picture of the codomain decomposed into the range
of A and its orthogonal complement and then drawing various possibilities for the codomain vector b.
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Questions:

Given measured data (xk, yk), k = 1, · · · ,m can you fit the model,

y ≈ α0 + α3x
3 + α9x

9 ?

Or the model,
y ≈ αx+ βex + γ cos(12x3) ?

How could you fit the model,
y ≈ α eβx,

for data obeying yk > 0?

3. (a) Viewing ωT as a 1 × n matrix representation of a linear mapping ωT : Rn → R
gives an interpretation of ωT as a rank 1 row matrix with an (n− 1)–dimensional
nullspace N (ωT ) ⊂ X = Rn.2 This is equivalent to saying that the set of all
vectors in Rn which are orthogonal to the single (i.e. dimension 1) direction lying
along ω is an (n− 1)–dimensional subspace of Rn. This set is precisely N (ωT ).3

Let xp be a nonzero “particular solution” to the linear inverse problem,4

ωTx = d . (1)

As we know from our studies of linear inverse problems, the set of all solutions to
equation (??) is given by the affine subspace

H = xp +N (ωT ) .

ThusH is a translation of the (n−1)–dimensional subspaceN (ωT ) and is therefore
an (n− 1)–dimensional affine subspace and hence (by definition) is a hyperplane.

(b) The minimum norm solution x0 to the inverse problem (??) must satisfy the
condition that it lies in the range of the adjoint of ωT , which is equivalent to the
condition

x0 = ωλ

for some scalar parameter λ. (I.e., the minimum distance to the hyperplane must
be along the direction of ω.) Combining this condition with (??) yields λ = d

‖ω‖2 ,
resulting in

x0 =
d

‖ω‖2
ω =

d

‖ω‖
ω

‖ω‖
=

d

‖ω‖
n

2The standard inner product is assumed to hold on all spaces.
3Namely, vectors in N (ωT ) ⊂ Rn can have components along all directions but one; they cannot have a

nonzero component along the direction ω. This is because x ∈ N (ωT ) ⇐⇒ 〈ω, x〉 = ωTx = 0.
4Since ωT is onto, a particular solution xp is guaranteed to exist.
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where n = ω
‖ω‖ is the unit vector pointing in the same direction as ω. The norm

of x0, ‖x0‖ = |d|
‖ω‖ , gives the minimum (unsigned) distance from the origin to the

hyperplane H. The quantity

∆ ,
d

‖ω‖
gives the minimum signed distance from the origin to the hyperplane, where a
positive value for d indicates that the vector x0 points in the same direction as ω
while a negative value for d indicates that x0 points in the opposite direction to
the vector ω. Note, then, that we have obtained

x0 = ∆n ,

where x0 represents the minimum distance displacement required to move the
origin to the hyperplane where this displacement is equal to the (signed) distance
∆ along the direction given by the unit vector n.

(c) Define

D(x) ,
h(x)

‖ω‖
= nTx−∆

and note that n is a unit vector perpendicular to any displacement vector of the
form v = x1 − x2, x1, x2 ∈ H = xp +N (ωT ),

nTv = nTx1 − nTx2 = d− d = 0 .

This shows that n is perpendicular to the hyperplane H (as expected). That ∆
is a signed distance has been discussed above.

Obviously D(x) and h(x) have the same sign for all x ∈ Rn so that the perceptron
can be equivalently defined as a hard–thresholding of either function.

(d) Note that any vector x ∈ Rn can be written as

x = x‖ + x⊥

where x‖ = nnTx ∈ R(ω) is the projection of x along (parallel to) the direction n
(equivalently, along the direction ω) and x⊥ = x − x‖ = (I − nnT )x ∈ R(ω)⊥ =
N (ωT ) is the component of x which is perpendicular to n (equivalently, perpen-
dicular to ω). Note, then, that the matrix nnT gives the orthogonal projection
onto R(ω) = N (ωT )⊥ while the matrix (I −nnT ) gives the orthogonal projection
onto N (ωT ).

Let the point xopt ∈ H be the orthogonal projection of an arbitrary point x onto
the hyperplane H. The length of the vector x− xopt gives the minimum distance
of the point x to the hyperplane H which corresponds to the requirement that
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x − xopt ⊥ N (ωT ). This is equivalent to the condition (I − nnT ) (x− xopt) = 0
which can be written as

x− xopt = nnT (x− xopt) = n(nTx− nTxopt) = n (nTx−∆) = D(x)n ,

using the fact that xopt ∈ H ⇒ nTxopt = ∆. Thus D(x) gives the signed distance
of the point x to the hyperplane H. The minimum (unsigned) distance of x to H
is then given by ‖x− x0‖ = |∆|.

By writing D(x) as

D(x) = nTx‖ −∆ = nTx− nTx0 = nT (x− x0)

we see that D(x) is the signed length of x projected along the direction n and
re–referenced to the minimum distance point x0 = ∆ · n found above.

Thus D(x) gives a measure of the degree of penetration of x into the half–space
S+ (if the signed distance D(x) is positive) or into the half–space S− (if the signed
distance D(x) is negative). Because the hard–limiter function only cares about
the sign of D(x), we see that the perceptron throws away the information about
the distance of the point x to the half-spaces separated by the hyperplane H.5

4. Note that a singular value decomposition (SVD) is not fully unique. However, the sin-
gular values are unique. Additional unique quantities are the projection matrices onto
the four fundamental subspaces and the pseudoinverse, all of which can be computed
from knowledge of the SVD.

(a) We first determine that m = 3, n = 1, r = 1, ν = 0, and µ = 2. Once the
dimensions of the various subspaces are known, we can systematically work the
matrix A into the appropriate factorization,6

A =

1
0
1

 =

 1√
2

0
1√
2

 (
√

2)(1) = U1SV
T
1

=

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

√2
0
0

 (1) =
(
U1 U2

)(S
0

)(
V T
1

)
= UΣV T .

All the columns of U provide an orthonormal basis for Y = R3. The column of U1

spans R(A) and the two columns of U2 provide an orthonormal basis for N (AT ).

5I.e., the perceptron cares only about the fact, but not the degree, of penetration into one or another of
the half–spaces S− and S+. A probabilistic generalization of the perceptron known as logistic regression
exploits all of the information provided by the distance function D(x).

6Note that these are very specially constructed matrices which have been hand crafted to be amenable to
this approach. Generally this approach cannot be applied and numerical techniques must be used to obtain
the SVD.
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The single element of V T = V T
1 spans R(AT ) = R = X . The nullspace of A is

trivial. With the SVD in hand, it is readily determined that σ1 =
√

2 > 0 and

A+ =
1

2

(
1 0 1

)
;

PR(A) =
1

2

1 0 1
0 0 0
1 0 1

 ;

PN (AT ) =
1

2

 1 0 −1
0 2 0
−1 0 1

 ;

PR(AT ) = 1 ;

PN (A) = 0 .

Note that because A has full column rank we can also compute A+ directly as
A+ = (ATA)−1AT .

(b) We first determine that m = 3, n = 2, r = 2, ν = 0, and µ = 1. Again, once the
dimensions of the various subspaces are known, we can systematically work the
matrix A into the appropriate factorization,

A =

1 0
0 1
1 0

 =

 1√
2

0

0 1
1√
2

0

(√2 0
0 1

)
=

 1√
2

0

0 1
1√
2

0

(√2 0
0 1

)(
1 0
0 1

)
= U1SV

T
1

=

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

√2 0
0 1
0 0

(1 0
0 1

)
=
(
U1 U2

)(S 0
0 0

)(
V T
1

V T
2

)
= UΣV T .

All the columns of U provide an orthonormal basis for Y = R3. The two columns
of U1 gives an orthonormal basis for R(A) and the column of U2 spans N (AT ).
Both rows of V T = V T

1 provide an orthonormal basis for R(AT ) = R2 = X . The

nullspace of A is trivial. It now can be readily determined that σ1 =
√
2
2
> σ2 =

1 > 0 and

A+ =

(
1
2

0 1
2

0 1 0

)
;

PR(A) =

1
2

0 1
2

0 1 0
1
2

0 1
2

 ;

PN (AT ) =

 1
2

0 −1
2

0 0 0
−1

2
0 1

2

 ;

PR(AT ) = I , PN (A) = 0 .
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Note that because A has full column rank we can also compute A+ directly as
A+ = (ATA)−1AT .

(c) Here m = n = 3 while r = 2. For this case, the matrix A is rank–deficient
(i.e., is neither one–to–one nor onto) and hence the pseudoinverse, A+, cannot be
constructed using an analytic formula as can be done for the full–rank cases. We
also have ν = µ = 1. The matrix A factors as

A =

1 0 1
0 1 0
1 0 1

 =

 1√
2

0

0 1
1√
2

0

(√2 0
√

2
0 1 0

)
=

 1√
2

0

0 1
1√
2

0

(√2 0
0 1

)(
1 0 1
0 1 0

)

=

 1√
2

0

0 1
1√
2

0

(2 0
0 1

)( 1√
2

0 1√
2

0 1 0

)
= U1SV

T
1

=

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

2 0
0 1
0 0

( 1√
2

0 1√
2

0 1 0

)

=

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

2 0 0
0 1 0
0 0 0

 1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2


=

(
U1 U2

)(S 0
0 0

)(
V T
1

V T
2

)
= UΣV T .

All the columns of U provide an orthonormal basis for Y = R3. The two columns
of U1 gives an orthonormal basis for R(A) and the column of U2 spans N (AT ).
All the rows of V T provide an orthnormal basis for X = R3. The two rows of V T

1

provide an orthonormal basis for R(AT ). The nullspace of A is spanned by the
row of V T

2 . It can now be readily determined that σ1 = 2 > σ2 = 1 > 0 and

PR(A) =

1
2

0 1
2

0 1 0
1
2

0 1
2

 ;

PN (AT ) =

 1
2

0 −1
2

0 0 0
−1

2
0 1

2

 ;

PR(AT ) =

1
2

0 1
2

0 1 0
1
2

0 1
2

 ;

PN (A) =

 1
2

0 −1
2

0 0 0
−1

2
0 1

2

 .
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Note that because A is symmetric it just happens to be the case that PR(A) =
PR(AT ) and PN (A) = PN (AT ),

7 however this is not true for a general nonsym-
metric matrix A.

(d) Here m = 2, n = 3, and r = 1. Thus A is rank–deficient and non–square (and
definitely nonsymmetric).

A =

(
1 1 1
2 2 2

)
=

(
1
2

)(
1 1 1

)
=

(
1√
5
2√
5

)
(
√

5)
(
1 1 1

)
=

(
1√
5
2√
5

)
(
√

15)
(

1√
3

1√
3

1√
3

)
= U1SV

T
1

=

(
1√
5
− 2√

5
2√
5

1√
5

)(√
15
0

)(
1√
3

1√
3

1√
3

)

=

(
1√
5
− 2√

5
2√
5

1√
5

)(√
15 0 0
0 0 0

)
1√
3

1√
3

1√
3

1√
2

0 − 1√
2

1√
6
− 2√

6
1√
6


= UΣV T .

Both columns of U provide an orthonormal basis for Y = R2. The column of
U1 spans R(A) and the column of U2 spans N (AT ). All the rows of V T provide
an orthonormal basis for X = R3. The row of V T

1 spans R(AT ). The nullspace
of A is spanned by the two rows of V T

2 . It can now be readily determined that

7The special properties PR(A) = PR(A∗) and PN (A) = PN (A∗) hold for any self-adjoint matrix A,
A = A∗.
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σ1 =
√

15 > 0 and

A+ =
1

15

1 2
1 2
1 2

 ;

PR(A) =
1

5

(
1 2
2 4

)
;

PN (AT ) =
1

5

(
4 −2
−2 1

)
;

PR(AT ) =
1

3

1 1 1
1 1 1
1 1 1

 ;

PN (A) =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2

 .
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