ECE 174 Homework # 4 Solutions

- 1. The two situations correspond to the mutually exclusive cases of a) b is in the range of A, and b) nonzero b is not in the range of A.¹
- 2. Meyer Problem 4.6.7. Let the data pairs be given by (x_k, y_k) , $k = 1, \dots, m = 11$. (E.g., $(x_1, y_1) = (-5, 2)$, etc.). For both the line fit and the quadratic fit, we want to place the problem in the vector-matrix form,

$$y = A\alpha$$

for $A \ m \times n$, where n is the dimension of the unknown parameter vector α , and solve for α in the least-squares sense. For the linear fit we have,

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_m \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = A\alpha \,,$$

with n = 2. While for the quadratic fit we have,

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_m & x_m^2 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{pmatrix} = A\alpha \,,$$

with n = 3. Note that in both cases we have the data to fill in numerical values of y and A. In both cases we have that the matrix A is full rank (you can check in matlab, but it will usually be true for this type of problem). Thus the least squares solution can be determined as,

$$\widehat{\alpha} = (A^T A)^{-1} A^T y \,.$$

The optimal least-squares error has magnitude,

$$||e||^{2} = ||y - A\widehat{\alpha}||^{2} = (y - A\widehat{\alpha})^{T} (y - A\widehat{\alpha}) ,$$

which can be computed for both the quadratic and linear fits. In this case you will find that the quadratic fit provides a much tighter fit to the data. Once you have the parameters at hand, you can perform the prediction by plugging in the new value for x_k .

¹This answer can be easily understood by drawing a picture of the codomain decomposed into the range of A and its orthogonal complement and then drawing various possibilities for the codomain vector b.

Questions:

Given measured data $(x_k, y_k), k = 1, \dots, m$ can you fit the model,

$$y \approx \alpha_0 + \alpha_3 x^3 + \alpha_9 x^9$$
?

Or the model,

$$y \approx \alpha x + \beta e^x + \gamma \cos(12x^3)$$
?

How could you fit the model,

$$y \approx \alpha \,\mathrm{e}^{\,\beta x},$$

for data obeying $y_k > 0$?

3. (a) Viewing ω^T as a $1 \times n$ matrix representation of a linear mapping $\omega^T : \mathbb{R}^n \to \mathbb{R}$ gives an interpretation of ω^T as a rank 1 row matrix with an (n-1)-dimensional nullspace $\mathcal{N}(\omega^T) \subset \mathcal{X} = \mathbb{R}^{n,2}$ This is equivalent to saying that the set of all vectors in \mathbb{R}^n which are orthogonal to the *single* (i.e. dimension 1) direction lying along ω is an (n-1)-dimensional subspace of \mathbb{R}^n . This set is precisely $\mathcal{N}(\omega^T)$.³

Let x_p be a nonzero "particular solution" to the linear inverse problem,⁴

$$\omega^T x = d. \tag{1}$$

As we know from our studies of linear inverse problems, the set of all solutions to equation (??) is given by the affine subspace

$$\mathcal{H} = x_p + \mathcal{N}(\omega^T) \,.$$

Thus \mathcal{H} is a translation of the (n-1)-dimensional subspace $\mathcal{N}(\omega^T)$ and is therefore an (n-1)-dimensional affine subspace and hence (by definition) is a hyperplane.

(b) The minimum norm solution x_0 to the inverse problem (??) must satisfy the condition that it lies in the range of the adjoint of ω^T , which is equivalent to the condition

$$x_0 = \omega \lambda$$

for some scalar parameter λ . (I.e., the minimum distance to the hyperplane must be along the direction of ω .) Combining this condition with (??) yields $\lambda = \frac{d}{\|\omega\|^2}$, resulting in

$$x_0 = \frac{d}{\|\omega\|^2} \omega = \frac{d}{\|\omega\|} \frac{\omega}{\|\omega\|} = \frac{d}{\|\omega\|} n$$

²The standard inner product is assumed to hold on all spaces.

³Namely, vectors in $\mathcal{N}(\omega^T) \subset \mathbb{R}^n$ can have components along all directions but one; they **cannot** have a nonzero component along the direction ω . This is because $x \in \mathcal{N}(\omega^T) \iff \langle \omega, x \rangle = \omega^T x = 0$.

⁴Since ω^T is onto, a particular solution x_p is guaranteed to exist.

where $n = \frac{\omega}{\|\omega\|}$ is the unit vector pointing in the same direction as ω . The norm of x_0 , $\|x_0\| = \frac{|d|}{\|\omega\|}$, gives the minimum (*unsigned*) distance from the origin to the hyperplane \mathcal{H} . The quantity

$$\Delta \triangleq \frac{d}{\|\omega\|}$$

gives the minimum signed distance from the origin to the hyperplane, where a positive value for d indicates that the vector x_0 points in the same direction as ω while a negative value for d indicates that x_0 points in the opposite direction to the vector ω . Note, then, that we have obtained

$$x_0 = \Delta n \,,$$

where x_0 represents the minimum distance displacement required to move the origin to the hyperplane where this displacement is equal to the (signed) distance Δ along the direction given by the unit vector n.

(c) Define

$$D(x) \triangleq \frac{h(x)}{\|\omega\|} = n^T x - \Delta$$

and note that n is a unit vector perpendicular to any displacement vector of the form $v = x_1 - x_2, x_1, x_2 \in \mathcal{H} = x_p + \mathcal{N}(\omega^T),$

$$n^T v = n^T x_1 - n^T x_2 = d - d = 0.$$

This shows that n is perpendicular to the hyperplane \mathcal{H} (as expected). That Δ is a signed distance has been discussed above.

Obviously D(x) and h(x) have the same sign for all $x \in \mathbb{R}^n$ so that the perceptron can be equivalently defined as a hard-thresholding of either function.

(d) Note that any vector $x \in \mathbb{R}^n$ can be written as

$$x = x_{\parallel} + x_{\perp}$$

where $x_{\parallel} = nn^T x \in \mathcal{R}(\omega)$ is the projection of x along (parallel to) the direction n(equivalently, along the direction ω) and $x_{\perp} = x - x_{\parallel} = (I - nn^T)x \in \mathcal{R}(\omega)^{\perp} = \mathcal{N}(\omega^T)$ is the component of x which is perpendicular to n (equivalently, perpendicular to ω). Note, then, that the matrix nn^T gives the orthogonal projection onto $\mathcal{R}(\omega) = \mathcal{N}(\omega^T)^{\perp}$ while the matrix $(I - nn^T)$ gives the orthogonal projection onto $\mathcal{N}(\omega^T)$.

Let the point $x_{opt} \in \mathcal{H}$ be the orthogonal projection of an arbitrary point x onto the hyperplane \mathcal{H} . The length of the vector $x - x_{opt}$ gives the minimum distance of the point x to the hyperplane \mathcal{H} which corresponds to the requirement that $x - x_{\text{opt}} \perp \mathcal{N}(\omega^T)$. This is equivalent to the condition $(I - nn^T)(x - x_{\text{opt}}) = 0$ which can be written as

$$x - x_{\text{opt}} = nn^{T}(x - x_{\text{opt}}) = n(n^{T}x - n^{T}x_{\text{opt}}) = n(n^{T}x - \Delta) = D(x)n,$$

using the fact that $x_{\text{opt}} \in \mathcal{H} \Rightarrow n^T x_{\text{opt}} = \Delta$. Thus D(x) gives the signed distance of the point x to the hyperplane \mathcal{H} . The minimum (unsigned) distance of x to \mathcal{H} is then given by $||x - x_0|| = |\Delta|$.

By writing D(x) as

$$D(x) = n^{T} x_{\parallel} - \Delta = n^{T} x - n^{T} x_{0} = n^{T} (x - x_{0})$$

we see that D(x) is the signed length of x projected along the direction n and re-referenced to the minimum distance point $x_0 = \Delta \cdot n$ found above.

Thus D(x) gives a measure of the degree of penetration of x into the half-space S^+ (if the signed distance D(x) is positive) or into the half-space S^- (if the signed distance D(x) is negative). Because the hard-limiter function only cares about the sign of D(x), we see that the perceptron throws away the information about the distance of the point x to the half-space separated by the hyperplane $\mathcal{H}^{.5}$

- 4. Note that a singular value decomposition (SVD) is **not** *fully* unique. However, the *sin-gular values* are unique. Additional unique quantities are the *projection matrices* onto the four fundamental subspaces and the *pseudoinverse*, all of which can be computed from knowledge of the SVD.
 - (a) We first determine that m = 3, n = 1, r = 1, $\nu = 0$, and $\mu = 2$. Once the dimensions of the various subspaces are known, we can systematically work the matrix A into the appropriate factorization,⁶

$$A = \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{pmatrix} (\sqrt{2})(1) = U_1 S V_1^T$$
$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\0&1&0\\\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{2}\\0\\0 \end{pmatrix} (1) = \begin{pmatrix} U_1 & U_2 \end{pmatrix} \begin{pmatrix} S\\0 \end{pmatrix} (V_1^T) = U \Sigma V^T.$$

All the columns of U provide an orthonormal basis for $\mathcal{Y} = \mathbb{R}^3$. The column of U_1 spans $\mathcal{R}(A)$ and the two columns of U_2 provide an orthonormal basis for $\mathcal{N}(A^T)$.

⁵I.e., the perceptron cares only about the *fact*, but not the *degree*, of penetration into one or another of the half-spaces S^- and S^+ . A probabilistic generalization of the perceptron known as *logistic regression* exploits all of the information provided by the distance function D(x).

⁶Note that these are very specially constructed matrices which have been *hand crafted* to be amenable to this approach. Generally this approach cannot be applied and numerical techniques must be used to obtain the SVD.

The single element of $V^T = V_1^T$ spans $\mathcal{R}(A^T) = \mathbb{R} = \mathcal{X}$. The nullspace of A is trivial. With the SVD in hand, it is readily determined that $\sigma_1 = \sqrt{2} > 0$ and

$$A^{+} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \end{pmatrix};$$

$$P_{\mathcal{R}(A)} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix};$$

$$P_{\mathcal{N}(A^{T})} = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix};$$

$$P_{\mathcal{R}(A^{T})} = 1;$$

$$P_{\mathcal{N}(A)} = 0.$$

Note that because A has full column rank we can also compute A^+ directly as $A^+ = (A^T A)^{-1} A^T$.

(b) We first determine that m = 3, n = 2, r = 2, $\nu = 0$, and $\mu = 1$. Again, once the dimensions of the various subspaces are known, we can systematically work the matrix A into the appropriate factorization,

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = U_1 S V_1^T$$
$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (U_1 \quad U_2) \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_1^T \\ V_2^T \end{pmatrix} = U \Sigma V^T.$$

All the columns of U provide an orthonormal basis for $\mathcal{Y} = \mathbb{R}^3$. The two columns of U_1 gives an orthonormal basis for $\mathcal{R}(A)$ and the column of U_2 spans $\mathcal{N}(A^T)$. Both rows of $V^T = V_1^T$ provide an orthonormal basis for $\mathcal{R}(A^T) = \mathbb{R}^2 = \mathcal{X}$. The nullspace of A is trivial. It now can be readily determined that $\sigma_1 = \frac{\sqrt{2}}{2} > \sigma_2 =$ 1 > 0 and

$$A^{+} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix};$$

$$P_{\mathcal{R}(A)} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix};$$

$$P_{\mathcal{N}(A^{T})} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix};$$

$$P_{\mathcal{R}(A^{T})} = I, \qquad P_{\mathcal{N}(A)} = 0.$$

Note that because A has full column rank we can also compute A^+ directly as $A^+ = (A^T A)^{-1} A^T$.

(c) Here m = n = 3 while r = 2. For this case, the matrix A is rank-deficient (i.e., is neither one-to-one nor onto) and hence the pseudoinverse, A^+ , cannot be constructed using an analytic formula as can be done for the full-rank cases. We also have $\nu = \mu = 1$. The matrix A factors as

$$\begin{split} A &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 & \sqrt{2} \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} = U_1 S V_1^T \\ &= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \\ &= (U_1 & U_2) \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_1^T \\ V_2^T \end{pmatrix} = U \Sigma V^T \,. \end{split}$$

All the columns of U provide an orthonormal basis for $\mathcal{Y} = \mathbb{R}^3$. The two columns of U_1 gives an orthonormal basis for $\mathcal{R}(A)$ and the column of U_2 spans $\mathcal{N}(A^T)$. All the rows of V^T provide an orthonormal basis for $\mathcal{X} = \mathbb{R}^3$. The two rows of V_1^T provide an orthonormal basis for $\mathcal{R}(A^T)$. The nullspace of A is spanned by the row of V_2^T . It can now be readily determined that $\sigma_1 = 2 > \sigma_2 = 1 > 0$ and

$$P_{\mathcal{R}(A)} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix};$$

$$P_{\mathcal{N}(A^{T})} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix};$$

$$P_{\mathcal{R}(A^{T})} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix};$$

$$P_{\mathcal{N}(A)} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}.$$

Note that because A is symmetric it just happens to be the case that $P_{\mathcal{R}(A)} = P_{\mathcal{R}(A^T)}$ and $P_{\mathcal{N}(A)} = P_{\mathcal{N}(A^T)}$, however this is **not** true for a general **nonsym**metric matrix A.

(d) Here m = 2, n = 3, and r = 1. Thus A is rank-deficient and non-square (and definitely nonsymmetric).

$$\begin{split} A &= \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{5} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{15} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} = U_1 S V_1^T \\ &= \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{15} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{15} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix} \\ &= U \Sigma V^T \,. \end{split}$$

Both columns of U provide an orthonormal basis for $\mathcal{Y} = \mathbb{R}^2$. The column of U_1 spans $\mathcal{R}(A)$ and the column of U_2 spans $\mathcal{N}(A^T)$. All the rows of V^T provide an orthonormal basis for $\mathcal{X} = \mathbb{R}^3$. The row of V_1^T spans $\mathcal{R}(A^T)$. The nullspace of A is spanned by the two rows of V_2^T . It can now be readily determined that

⁷The *special* properties $P_{\mathcal{R}(A)} = P_{\mathcal{R}(A^*)}$ and $P_{\mathcal{N}(A)} = P_{\mathcal{N}(A^*)}$ hold for any *self-adjoint* matrix A, $A = A^*$.

 $\sigma_1 = \sqrt{15} > 0$ and

$$A^{+} = \frac{1}{15} \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix};$$

$$P_{\mathcal{R}(A)} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix};$$

$$P_{\mathcal{N}(A^{T})} = \frac{1}{5} \begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix};$$

$$P_{\mathcal{R}(A^{T})} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix};$$

$$P_{\mathcal{N}(A)} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$